ALL YOU EVER

=
=
=
==
<
=
o
z.
M
©
=
a
=
=
z
<
=

—

ON THE PCW 8256 / 8512

«eeee.. BUT WERE AFRAID TO ASK

CP SOFTWARE

READ THIS FIRST

We recommend you make a back-up copy of the master disc before doing
anything else. The master disc has been left unprotected for this purpose
only. Remember PLEASE BUY DON'T STEAL.

For a practical demonstration of some of the capabilities of All you ever
needed to know but were afraid to ask, a DEMO program is
supplied on the master disc. To run this proceed as follows:

1. Switch your PCW off and then on again.

2. Insert your CP/M disc (usually side two of the Amstrad discs
supplied with the PCW) and press any key. Wait for CP/M to load as
evidenced by the A> prompt.

3. Remove the CP/M disc and insert the master disc into drive A.

4. Type DEMO <enter> and the demonstration program should run.
Note that the DEMO program requires the disc to be left in drive A.

After you have finished with the DEMO program,
we suggest you go straight to the demonstration
section of the manual, which takes you, step by step,
through examples designed to get you started using
this package.

© Copyright CP Software 1986

All rights reserved. No part of this publication may be reproduced or transmitted in any form
without written permission of the copyright holder. As the original purchaser, you are
granted sole copyright free use of the routines and information published in this package, for
any purpose - including publication for sale, excepting publication as part of a similar
collection of routines or software toolkit.

All you ever wanted to know Page 1 but were afraid to ask

Introduction

Welcome to All you ever wanted to know about GRAPHICS , THE
UNIVERSE AND EVERYTHING on the PCW 8256/8512 but were
afraid to ask, programs and documentation designed to help you create
graphics output of the standard found only in professional software.

SCODE.COM is a collection of fifty-two machine code routines, including fast,
smooth sprite graphics, directly executable from your own programs.

SCODE . GEN is the fully documented Z80 source code for the above routines.

DEMO.COM, DEMO1.COM, DEMO2.COM, DEMO3.COM and various BASIC
programs show you some of the many ways the routines can be used.

ERROR.DOC is an ascii file containing documentation about any errors in the
manual or program, and information on how to fix them.

The manual contains hitherto unavailable or restricted information, essential for
development of good quality software.

1. All the technical and hardware information needed for experienced
assembly language programmers to easily produce high quality graphics
and stretch the PCW to the limit.

2. Source code and working examples for those with limited knowledge of
machine code who want to know more.

3. Compiled and easily accessed machine code routines for direct use by the
BASIC programmer who needs fast, smoothly flowing graphic output.

We strongly recommend that you make a back-up copy of the master disc

before using it; it has been left without copy protection for this purpose only.
Please Buy, don't Steal.

All you ever wanted to know Page 2 but were afraid to ask

DEMONSTRATION

All you ever wanted to know about the PCW 8256/8512 but were
afraid to ask is designed to allow you to work up to the standards of the
professional programmer. If you are new to programming we suggest you
start by following this demonstration on your computer, matching it to the
instructions below. Just follow the directions and do not be concerned if some of
the technical details are obscure, as they are explained later in the manual.
Make sure you type all the instructions accurately, as errors may cause the
computer to crash. In this event, don't worry, you can't damage your computer
with software crashes, just switch off and start again.

1. At this stage you will need to use the routines under the control of BASIC, so:

a. Turn your PCW off then on again, insert your CP/M disc (usually side
two) and press a key. CP/M should load as evidenced by the A> prompt.

b. Insert the master disc into drive A. and type SCODE <enter>. The
routines will load and announce themselves.

c. Remove the master disc and insert the Amstrad distribution BASIC disc
(usually side two). Type BASIC <enter> and BASIC should load and
announce itself.

d. Finally, type MEMORY &HBFFF <enter> to reserve sufficient
memory.

2. We will start with a simple example BEEP. Beep is routine number (3) and is
located at address 49760.
To use it type A=49760 <enter>
CALL A <enter>
and you should hear a beep.

You could also use the 'hexadecimal' address C260.
Type A=&HC260 <enter>

CALL A <enter>
which should give the same result.

All you ever wanted to know Page 3 but were afraid to ask

3. You can turn the beeper on forever (1) with
A=53902 <enter>
CALL A <enter>
but will probably want to turn it off (2) again with
A=53907 <enter>
CALL A <enter>

Incidentally, this technique of turning the beeper on and off, but much faster, is
used in routine (48) to emit 'notes' from the speaker.

4. BASIC lacks a screen clear command (14) so:

CLS=49749 - note <enter> is assumed from now on.

CALL CLS

should clear the screen for you, except for the status line, but you can turn this
off (22) with

A=49768

CALL A

5. To plot a pixel (19) try:

A=49190

CALL A

You will see a pixel appear at the bottom left corner of the screen, to position
the pixel elsewhere on the screen, you'll have to pass some values to the
routine.

Lets try an X=50 and Y=100

X=50

Y=100

POKE 49220,X

POKE 49221,0

POKE 49222,Y

POKE 49223,0

CALL CLS - remember this ?

CALL A

and you should see the pixel appear.

To make it disappear (20) again try:

A=58972

CALL A

All you ever wanted to know Page 4 but were afraid to ask

7. To draw a line (17) from X1,Y1 to X2,Y2 lets try:

X1=50

Y1=100

X2=100

Y2=200

POKE 56186,1 ; one line only
POKE 56187,0

POKE 56188,0 ; origin at 0,0
POKE 56189,0

POKE 56190,0

POKE 56191,0

POKE 56192,X1 ; use 16 bit value
POKE 56193,0

POKE 56194,Y1

POKE 56195,0

POKE 56196,X2

POKE 56197,0

POKE 56198,Y2

POKE 56199,0

A=49152

CALL A

and the line should appear.

8. Interestingly, to turn the screen off, (31) type:

A=53882

CALL A

and you'll see nothing, even though its still there.

Now be careful since you can't see your key presses anymore.

To turn the screen back on (32) type:

A=53887

CALL A

and all should be clear. If you got in a mess perhaps you'd better switch off and
start again !

This routine would be useful for writing to the screen and then showing the full
picture.

All you ever wanted to know Page 5 but were afraid to ask

9. You could erase the line (18) drawn previously with:
A=49171

CALL A

since the line coordinate data has not been lost.

10. Now we'll print various sizes of text (36), you might like to ensure your
printer is on line at this point, since we'll be sending some special graphics there
too.

We'll use the text string HELLO.

Firstly we need to tell the routine the address at which the text string will be
saved and then save the text string there address 58485 (hexadecimal E475)
onwards is convenient. E475 is a sixteen bit address and will need to be saved in
a special Z80 convention known as low-high. See Conventions Used at the
end of the manual for an explanation of this.

POKE 58352,&H75 ; 16 bit low

POKE 58353,&HE4 ; 16 bit high

POKE 58485,0 ; normal text
POKE 58486,72 s H

POKE 58487,69 s E

POKE 58488,76 : L

POKE 58489,76 4L

POKE 58490,79 ; O

POKE 58491,36 ; terminator
A=49666

CALL A

and HELLO should appear on the screen.

For different text sizes try:

POKE 58485,1

CALL A

and

POKE 58485,2

CALL A

and you should see double height and double width text.

All you ever wanted to know Page 6 but were afraid to ask

11. You can also send these characters to the printer (49). Normally the
printer uses its own character set, but this routine uses the same character set
as displayed on the PCW screen and therefore allows you to send characters
you may have designed youself (38), and to send altered sizes of text.

We'll use the same text as the example above. Make sure your printer is
connected !

Note: advance the paper to see the result after each CALL.

A=58476

CALL A

POKE 58485,1

CALL A

POKE 58485,0

CALL A

and the message should appear in different text sizes.

12. Probably the most versatile routines are those to plot and move SPRITES
(47). There is data for two simple sprites already in the program, but you will
need to initialise it (46) first.

POKE 53930,1

A=53640

CALL A

Then plot a sprite on the screen (47) at X,Y (origin at top left)
POKE 53996,0

X=200

Y=100

POKE 53943,X

POKE 53944,0

POKE 53945,Y

A=52940

CALL A

and the sprite should appear.

All you ever wanted to know Page 7 but were afraid to ask

To move the sprite to 210,110 (simultaneously deleting the old one)
X=210

Y=110

POKE 53943,X

POKE 53944,0

POKE 53945,Y

CALL A

and the sprite should move diagonally left.

We leave it to you to examine the BASIC example programs
supplied on the disc apd try them out. In several cases we have
saved 16 bit numbers, if you are unsure of this, please read
'Conventions Used' at the end of this manual, and then retry some
of the examples.

Good luck and happy programming.

All you ever wanted to know Page 8 but were afraid to ask

Loading Instructions

Note that you will always need to have loaded CP/M as described on the
first page in order to use the programs on your master disc.

To use the routines directly from BASIC proceed as follows:

1. After the CP/M prompt A>, insert your master disc and type SCODE
<enter>.

2. The routines will load and announce themselves.

3. Insert your CP/M master disc and type after the CP/M prompt A>,
BASIC <enter>.

4. BASIC will load and announce itself.

5. Now type MEMORY &HBFFF <enter> to protect the routines from
corruption by the BASIC program. The routines are ready to be used as
desribed in the manual.

Also on the disc are several example BASIC programs. We recommend you
LOAD these, examine them and try them out. You may wish to use the BASIC
routines from line 9000 onwards in your own program by merging them into it.
The BASIC programs also show you how to send 16 bit parameter values to the
routines.

For more experienced programmers, we have also provided the full Z80 source
code of the routines. These can be examined using either Type SCODE.GEN

from CP/M, or examined and modified using an assembler/editor such as the
HISOFT DEVPACSO0.

Credits

Written by Chris Whittington & Justin Garvanovic, © 1986
With many thanks to Electric Studio & HiSoft.

All you ever wanted to know Page 9 but were afraid to ask

THE COMPILED MACHINE CODE ROUTINES

Supplied on the disc is a file titled SCODE.CcOM. This contains a whole host of
routines that will enable you to do various tasks from both machine code and
BASIC.

The majority of the routines assume that information passed to them is
sensible so care will have to be taken in the form of the data passed. The form
of the data required is given in the list of routines. Remember, Garbage In,
Garbage Out.

Also supplied on the disc is the source code to the routines under the name
SCODE . GEN. This was prepared using HiSoft's Devpac80, a combined Editor
and Assembler. The source code is available for your use to experiment and
create more versatile routines.

Now follows a list of all the routines entry points and details of the information
needed, and given, by the routines. The routines are all situated in Common
RAM (CO00-FFFF) so that they can be called from and use any RAM
currently paged in.

THE ROUTINES

ROUTINE NAME Start Address in Hex and Decimal
(1) BEEPER ON #D28E (53902)
(2) BEEPER OFF #D293 (53907)
(3) BEEP #C260 (49760)
(4) HOME THE CURSOR #C24A (49738)
(5) TURN THE CURSOR OFF #C291 (49809)
(6) TURN THE CURSOR ON #C296 (49814)
(7) SAVE THE CURRENT CURSOR POSITION #C29C (49820)
(8) RESTORE THE CURSOR POSITION #C2A7 (49831)
(99 MOVE THE CURSOR UP #C2B2 (49842)
(10) MOVE THE CURSOR DOWN #C2BA (49850)
(11) MOVE THE CURSOR LEFT #C2C2 (49858)
(12) MOVE THE CURSOR RIGHT #C2CA (49866)
(13) SET THE CURSOR POSITION #C2D5 (49877)
(14) CLEAR THE SCREEN #C255 (49749)
(15) BACK SPACE WITH DELETE #C27E (49790)

All you ever wanted to know Page 10 but were afraid to ask

(16) DO A CARRIAGE RETURN #C2F2 (49906)

(17) DRAW A LINE / SET OF LINES #C000 (49152)
(18) DELETE A LINE / SET OF LINES #C013 (49171)
(19) PLOT A PIXEL #C026 (49190)
(20) UNPLOT A PIXEL #E65C (58972)
(21) FIND THE SYSTEM CLOCK #C1EC (49644)
(22) DISABLE THE STATUS LINE #C268 (49768)
(23) ENABLE THE STATUS LINE #C273 (49779)
(24) INITIALISE THE RANDOM

NUMBER GENERATOR #C40F (50191)
(25) GET A RANDOM NUMBER #C440 (50240)
(26) DELAY FOR n SECONDS #C47E (50302)
(27) WAIT FOR FRAME FLYBACK #DISF (53599)
(28) READ THE CASCADE 'JOYCESTICK' #D242 (53826)
(29) INVERT THE WHOLE SCREEN #D26E (53870)
(30) RESTORE THE WHOLE SCREEN #D274 (53876)
(31) SCREEN OFF #D27A (53882)
(32) SCREEN ON #D27F (53887)
(33) DISC MOTOR ON #D284 (53892)
(34) DISC MOTOR OFF #D289 (53897)
(35) SYSTEM RESET #D298 (53912)
(36) PRINT A STRING #C202 (49666)
(37) PRINT n SPACES #C402 (50178)
(38) GENERATE A USER DEFINED CHARACTER #C499 (50329)
(39) TOGGLE BETWEEN ITALIC

& NORMAL CHARACTERS #C4CB (50379)
(40) TOGGLE BETWEEN 2001

& NORMAL CHARACTERS #C4DE (50398)
(41) FILL A SCREEN LINE #CE24 (52772)
(42) FLOOD FILL #E3FE (58366)
(43) LOAD A FILE INTO MEMORY FROM DISC #CDO03 (52483)
(44) SAVE AN AREA OF MEMORY TO DISC #CD19 (52505)
(45) GET A CHARACTER #C20F (49679)
(46) INITIALISE THE SPRITE ROUTINE #D188 (53640)
(47) PRINT A SPRITE #CECC (52940)
(48) EMIT A 'NOTE' FROM THE SPEAKER #E444 (58436)
(49) SEND USER DEFINED GRAPHICS TO THE #E46C (58476)

PRINTER
(50) SCROLL THE WHOLE SCREEN #E681 (59009)
(51) LOAD A SCREEN FROM DISC #E6AD (59053)
(52) SAVE A SCREEN TO DISC #E688 (59016)

All you ever wanted to know Page 11 but were afraid to ask

(1) BEEPER ON (noisy this one) #D28E (53902)
Turns the beeper on indefinitely. Needs to be turned off with BEEPER OFF
(surprise surprise).

Entry conds. - None.

Exit conds. - Corrupts A

(2) BEEPER OFF (thats better) #D293 (53907)
Turns the beeper off (dead useful this)

Entry conds. - None.

Exit conds. - Corrupts A

(3) BEEP #C260 (49760)
Beeps the speaker for a short time

Entry conds. - None.

Exit conds. - None.

(4) HOME THE CURSOR (poor little thing) #C24A (49738)
Sends the cursor to the top left hand corner of the screen.

Entry conds. - None.

Exit conds. - None.

(5) TURN THE CURSOR OFF #C291 (49809)
Kills the cursor (aah!).

Entry conds. - None.

Exit conds. - None.

(6) TURN THE CURSOR ON #C286 (49798)
Rejuvenates the cursor.

Entry conds. - None.

Exit conds. - None.

(7) SAVE THE CURRENT CURSOR POSITION #C29C (49820)
Saves the current screen position of the cursor.

Entry conds. - None.

Exit conds. - None.

All you ever wanted to know Page 12 but were afraid to ask

(8) RESTORE THE CURSOR POSITION
Gets the saved cursor position back.

Entry conds. - None.

Exit conds. - None.

(99 MOVE THE CURSOR UP ONE POSITION
Move the cursor up a square

Entry conds. - None.

Exit conds. - None.

(10) MOVE THE CURSOR DOWN ONE POSITION
Move the cursor down a square

Entry conds. - None.

Exit conds. - None.

(11) MOVE THE CURSOR LEFT ONE POSITION
Move the cursor left a square

Entry conds. - None.

Exit conds. - None.

(12) MOVE THE CURSOR RIGHT ONE POSITION
Move the cursor right one square

Entry conds. - None.

Exit conds. - None.

(13) SET THE CURSOR POSITION

#C2A7 (49831)

#C2B2 (49842)

#C2BA (49850)

#C2C2 (49858)

#C2CA (49866)

#C2D5 (49877)

Place the cursor absolutely anywhere you want on the screen. (honestly)

Entry conds. - #C2F0 (49904) -> Row number.
#C2F1 (49905) -> Column number.
Exit conds. - None.

(14) CLEAR THE WHOLE SCREEN
You are not going to believe what this does.
Entry conds. - None.

Exit conds. - None.

All you ever wanted to know Page 13

#C255 (49749)

but were afraid to ask

(15) BACK SPACE WITH DELETE #C27E (49790)
Delete the character to the left of the cursor and move the cursor left one
square.

Entry conds. - none.

Exits conds. - none.

(16) DO A CARRIAGE RETURN #C2F2 (49906)
Send a carriage return to the screen.

Entry conds. - None.

Exit conds. - None.

(17) DRAW A LINE OR SET OF LINES #C000 (49152)
Will draw a line, or a number of lines, between any positions on the screen.
Entry conds. - #DB7A,#DB7B (56186,56187) = amount of lines to be
drawn. In the range 1 - 270.
#DB7C#DB7D (56188,56189) = X origin.
#DB7E#DB7F (56190,56191) = Y origin.
#DB80,#DB81 (56192,56193) = First X position
#DB82,#DB83 (56194,56195) = First Y position
#DB84,#DB85 (56196,56197) = Second X position
#DB86,#DB87 (56198,56199) = Second Y position
(data for the next line/s.)
#DB88,#DB89 (56200,56201) = First X position
#DB8A,#DB8B (56202,56203) = etc. etc. etc.

Position (0,0) is at the bottom left of the screen
with (719,255) at the top right hand corner.

If for instance you wished to draw a line between these
two points the data sent would look like this:-

Location Contents Comments
#DB7A#DB7B 1,0 Set the number of lines to one.
#DB7C-#DB7F 0 Set the origin to (0,0)
#DB80-#DB83 0 Set start point to (0,0)

#DB84,#DB85 207,2 Set X position to 719 (207+2%256)
#DB85,#DB86 255,0 Set Y position to 255 (255+0%256)
Exit conds. - AF,HL,DE,BC,C' are all corrupted.

All you ever wanted to know Page 14 but were afraid to ask

(18) DELETE A LINE OR A SET OF LINES #CO013 (49171)
This will erase a line, or set of lines, between any screen positions.

Entry conds. - (Exactly the same as for DRAW LINE)

Exit conds. - AF,HL,DE,BC,C' are all corrupted.

(19) PLOT A PIXEL #C026 (49190)

Plots a pixel anywhere on the screen.

Entry Conds. - #C044,#C045 (49220,49221) -> X pixel position.
#C046,#C047 (49222,49223) -> Y pixel position.

Exit conds. - AF,DE,HL,BC are all corrupted.

(20) UNPLOT A PIXEL #E65C (58972)
Erase a pixel form anywhere on the screen.

Entry Conds. - (as for plot pixel)

Exit conds. - AF,DE,HL,BC are all corrupted.

(21) FIND THE SYSTEM CLOCK #CI1EC (49644)
Send back the address of the system clock.
Entry conds. - None.
Exit conds. - #C200,C201 (49664,49665) point to the address.
AF,DE,BC are all corrupted, HL holds the address.

(22) DISABLE THE STATUS LINE #C268 (49768)
Get rid of the line at the bottom of the screen.

Entry conds. - None.

Exit conds. - None.

(23) ENABLE THE STATUS LINE #C273 (49779)
Bring the status line back to life.

Entry conds. - None.

Exit conds. - None.

(24) INITIALISE RANDOM NUMBER GENERATOR #C40F (50191)
Sets the initial seed for the random number generator. This will have

to be called before the random number generator is used.

Entry conds. - None.

Exit conds. - None.

All you ever wanted to know Page 15 but were afraid to ask

(25) GET A RANDOM NUMBER

Gets a random number between 0 & 255.

Entry conds. - None.

Exit conds. - #C477 (50295) holds the random number.
A holds the random number.

(26) DELAY FOR n SECONDS

Wait around and do nothing for n seconds.

Entry conds. - #C498 (50328) holds the delay in seconds.

Exit conds. - None.

(27) WAIT FOR A FRAME FLYBACK

Wait for the electron gun to start redrawing the screen.
Entry conds. - None.

Exit conds. - AF corrupted.

(28) READ THE CASCADE 'JOYCESTICK'

#C440 (50240)

#C47E (50302)

#D15F (53599)

#D242 (53820)

Read the joystick and set one of 5 memory locations depending on

which position the stick is in.
Entry conds. - None.

Exit conds. - #D29D (53917) -> Joystick left (1=button pressed)
#D29E (53918) -> Joystick Right (1=button pressed)
#D29F (53919) -> Joystick up (1=button pressed)
#D2A0 (53920) -> Joystick down (1=button pressed)
#D2A1 (53921) -> joystick fire (1=button pressed)

AF,B are corrupted.

(29) INVERT THE WHOLE SCREEN
Inverts the whole screen, including the border.

#D26E (53870)

IMPORTANT. For this routine to work it must disable the interrupts so

great care should be taken with it.
Entry conds. - None.
Exit conds. - A gets corrupted.

(30) RESTORE THE WHOLE SCREEN

#D274 (53876)

Restore the screen to it's normal state after it has been inverted.

Entry conds. - None.
Exit conds. - A gets corruputed.

All you ever wanted to know Page 16

but were afraid to ask

(31) SCREEN OFF (not literally)

#D27A (53882)

Turns the whole screen off. Useful for drawing something with the screen off

and making it instantly re-appear by turning it back on again.

Entry conds. - None.
Exit conds. - A gets corrupted.

(32) SCREEN ON

Turns the screen back on after it has been switched off.
Entry conds. - None.

Exit conds. - A gets corrupted.

(33) DISC MOTOR ON

Turns the disc motor on (bet you didn't expect that).
Entry conds. - None.

Exit conds. - A gets corrupted.

(34) DISC MOTOR OFF

Opens the garage door ! (after turning the disc motor off).

Entry conds. - None.
Exit conds. - A gets corrupted.

(35) SYSTEM RESET
Does a complete reset
Entry conds. - None.
Exit conds. - What exit ?

(36) PRINT A STRING

#D27F (53887)

#D284 (53892)

#D289 (53897)

#D298 (53912)

#C202 (49666)

Will print a string at the current cursor position in any one of 3 text sizes.

Entry conds. - #E3F0,#E3F1 (58352,58353) -> holds the
that points to the start of the message.

address

The message should be terminated with a '$' sign.
If certain values are inserted into the string then

the size of the text can be altered.
The values are 0-> Normal size text.
1-> Double width text.

2-> Double width and height text.

Exit conds. - AF,BC,DE,HL all get corrupted.

All you ever wanted to know Page 17

but were afraid to ask

(37) PRINT n AMOUNT OF SPACES #C402 (50178)
This will print a certain number of spaces at the current cursor position.

Note that if the 'PRINT STRING' function was last used

to print large text then the spaces will be the size of the text.

Entry conds. - #C40E (50190) -> The amount to be printed.

Exit conds. - AF,BC,DE,HL are all corrupted.

(38) GENERATE A USER DEFINED CHARACTER #C499 (50329)
Re-define any of the characters to something of your choice.
Entry conds. - #C4C2 (50370) should contain 9 bytes of data.
The first value should contain the character that is
going to be defined. The next 8 bytes should
contain the data.
Exit Conds. - AF,DE,BC,HL are all corrupted.

(39) TOGGLE ITALIC / NORMAL CHARACTER SET #C4CB (50379)
Toggle between the italic and normal character set.

Entry conds. - None.

Exit conds. - AF,BC,DE,HL are all corrupted.

(40) TOGGLE 2001 / NORMAL CHARACTER SET #C4DE (50398)
Toggle between the 2001 and normal character set.

Entry conds. - None.

Exit conds. - AF,BC,DE,HL are all corrupted.

(41) FILL A SCREEN LINE #CE24 (52772)

Draw a line outwards from a specified point until an obstruction is found

or the edge of the screen is met.

Entry conds. - #DB73 (56179) -> Y coordinate (from top left hand corner.)
#DB74,#DB75 (56180,56181) -> X coordinate.

Exit conds. - AF,BC,DE,HL are all corrupted.

(42) FLOOD FILL #E3FE (58366)
Fill an area of screen from a set point outwards. The fill will work

outwards until an obstruction is found and then move up until an

obstruction is found and finally work down until an obstruction is found.

Entry conds. - (as for the line fill)

Exit conds. - AF,BC,DE,HL are all corrupted.

All you ever wanted to know Page 18 but were afraid to ask

(43) LOAD A FILE INTO MEMORY #CDO03 (52483)
Will load a named file from any drive to anywhere in memory. It's best
use is in pulling files from the ram disc into memory quickly.
Entry conds. - #CCFF,#CD00(52479,52480) -> Should hold the first address
the data will be going in to.
#CDO01,#CD02 (52481,52482) -> Should hold the last
address the data will go into.
#CE18 (52760) onwards -> Should hold the filename in
the following format:
First character -> Drive (A,B,M).
The next 8 characters hold the filename padded out
with spaces. We recommend you use upper case A-Z only.
The next 3 characters hold the file type. eg. COM.
Exit conds. - AF,BC,DE,HL are all corrupted.

(44) SAVE AN AREA OF MEMORY TO DISC #CD19 (52505)
Will save any area of memory to disc.

Entry conds. - (As used in LOAD FILE)

Exit conds. - AF,BC,DE,HL are all corrupted.

(45) GET A CHARACTER #C20F (49679)
Read a character from the keyboard. Accepts keys 0-9, A-Z and RETURN.
Lower case letters are converted to upper case.
Entry conds. - None.
Exits conds. - #C249 (49737) contains the key value.

A=key value.

All you ever wanted to know Page 19 but were afraid to ask

(46) SPRITE INITIALISE #D188 (53640)
Initialises the sprite data for the sprite print routines.
Entry conds. - #D9ED (55789) -> The sprite data should be put in
here in the following form.
byte 1 -> width of sprite in bytes.
byte 2 -> height of sprite in pixels.
byte 3 onwards should contain the data.
There should only be (width)*(height)
amount of data.
(If there are 2 sprites it's data should come
directly after the first one's.)
N.B. The maximum sprite size is
6 bytes wide by 32 pixels high.
There is no detection within the program
to detect whether this has been exceeded.
#D2AA (53930) -> contains the number of sprites that need
initialising, should be either 1 or 2.
Exit conds. - AF,BC,DE,HL are all corrupted.

(47) PRINT A SPRITE #CECC (52940)
Prints a sprite on the screen and deletes an old image if there is one.
This routine makes use of the frame flyback routine to allow smooth movement.
Entry conds. -
#D2EC (53996) -> Number of the sprite to be moved.
Should be either O or 1, any value greater
than 1 is treated as a 1.
#D2B7,#D2B8 (53943,53944) -> Holds the X position
of sprite 0 (0 - 719)
#D2B9 (53945) -> Holds the Y position of Sprite 0
(0-255), from the top left hand corner.
#D2D7,#D2D8 (53975,53976) -> Holds the X position
of sprite 1 (0 - 719)
#D2D9 (53977) -> Holds the Y position of sprite 1
(0-255), from the top left hand corner.

Exit conds. - AF,BC,DE,HL are all corrupted
PLEASE NOTE: TO MAKE LIFE EASIER WHERE THE SPRITE ROUTINES ARE CONCERNED
THERE ARE ALREADY A SET OF 2 SPRITES IN THE SOURCE. YOU CAN EXAMINE THEM TO
SEE THEIR LAYOUT AND GENERALLY JUST PLAY WITH THEM.

All you ever wanted to know Page 20 but were afraid to ask

(48) PRODUCE A 'NOTE' FROM THE SPEAKER #E444 (58436)
This routine tries to produce a 'note!' out of the bleeper
Entry conds. - #E46A (58474 -> This should contain the pitch
#E468 (58472) -> This should contain the duration
Exit conds. - AF,HL,DE,BC are all corrupted

(49) SEND USER DEFINED GRAPHICS TO PRINTER #E46C (58476)
This routine will allow you to send user defined graphics to the printer.
It will also allow you to send double height andwidth characters to the
printer as well.
Entry conds. - A string of not more than 80 characters should be sent stored
at the address #E475 (58485). The first character in the message
should be a 'control code' to determine which size of text is to be
used. These codes are : 0 -> Normal size
1 -> Double width
2 -> Double width and height
The message should be terminated with an ascii $ sign (36)
Exit conds. - AF,HL,DE,BC are all corrupted

(50) SCROLL THE WHOLE SCREEN UP OR DOWN # E681 (59009)
Scroll the whole screen up or down a user specified amount
Entry Conds. -#E687 (59015) contains the displacement that the screen
is to be moved.
Exit conds. - A is corrupted

(51) LOAD A SCREEN FROM DISC # E6AD (59053)
Load a previously saved screen from disc.

Entry Conds. The filename is stored at #E6D1 (59089) onwards.

Exit Conds. All registers corrupted.

(52) SAVE A SCREEN TO DISC # E688 (59016)
Save the screen to disc.

Entry Conds. The filename is stored as above.

Exit Conds. All registers corrupted.

All you ever wanted to know Page 21 but were afraid to ask

ROLLER RAM & SCREEN RAM

Roller ram is an area of memory that holds 256 pointers to the start of each
video screen line. That mild description hardly does justice to the power of this
unique feature. For instance by simply moving the pointers to an adjacent
address the whole screen can be made to scroll up and down, pixel by pixel, at
will. This can be applied to the whole screen or just parts of it.

When the screen is hard scrolled by moving the cursor off the bottom of the
screen the roller ram is also updated which means that any access to the screen
must be done via the roller ram, rather than assuming a well organised screen
and calculating the screen address. Every routine that's supplied with this
package goes through roller ram to get a screen address, this even includes the
sprite routines. If greater speed is needed it would be possible to reset the
screen and access it directly assuming that no scrolling had been done.

Other effects can also be produced by manipulating the roller ram such as
echoing an area of the screen to another by simply copying one area of roller
ram to another. Multi-directional scrolling is possible, one area going up and
another going down, as seen at the end of the demo.

It is possible to point roller ram to other areas of memory. This could be useful
for updating say line drawn graphics quickly by drawing them on a hidden
screen and then pointing roller ram to the hidden screen.

The actual screen layout is fairly straightforward. The diagram below shows
how the top left hand corner of the screen is arranged.

COLUMN 1 COLUMN 2 COLUMN 3

ROW 1 START+0 START+8 START+16 ete.
ROW 2 START+1 START+9 START+17 etc.
ROW 3 START+2 START+10 START+18 etc.
ROW 4 START+3 START+11 START+19 ete:
ROW 5 START+4 START+12 START+20 etc.
ROW 6 START+5 START+13 START+21 etc:
ROW 7 START+6 START+14 START+22 etc.
ROW 8 START+7 START+15 START+23 etc.
ROW 9 START+720 START+728 START+736
etc etc etc

(this assumes that no scrolling has been done).

All you ever wanted to know Page 22 but were afraid to ask

COMMON RAM

Common ram is the name given to the area of memory from #C000 - #FFFF. It
is called common ram because whatever area of lower ram is paged in this area
always remains paged in. This makes it the ideal place to put routines that will
directly access the screen or roller ram. Not all of the memory from #CO000 -
#FFFF is available to the user as CP/M takes the memory from about #F000
upwards so care should be taken not to overwrite any of the important code
above #F000.

SCROLLING

As already mentioned it is possible to scroll the whole screen or parts of it up
and down using roller ram. This can be pixel by pixel, or more if needed. It is
also possible to scroll the screen sideways a byte at a time using roller ram.
This would be accomplished by taking an address from the roller ram,
incrementing or decrementing it, and putting it back. There is however a slight
problem with roller ram that has not yet been discussed. The addresses stored in
roller ram do not point directly to the screen address, but first require some
decoding. The routine that does this can be found in the source listing -
SCODE.GEN. The scrolling routine supplied in the source will only operate on
the whole screen. Please refer to the short listing below that uses roller ram to
scroll the screen, with modification it would be possible to scroll not just the
whole screen but parts of it by this method.

All you ever wanted to know Page 23 but were afraid to ask

LD IX, #B600 ; The roller ram address of the
; top line of the screen.

LD DE, #B602 ; The roller ram address of the
; second screen line down.
LD L, (IX+0) ; Get the low byte of the wvalue
; in the top line of roller ram.
LD H, (IX+1) ; Get the high byte of the value
; in the top line of roller ram.
LD B, 255 ; This is the amount of lines
; we want teoe scroll.
SCR10 LD B, (DE) ; Get the low byte from the
; second roller ram line down.
LD (IX+0),A ; Put it in the low byte of the
; top lines roller ram.
INC DE ; Move the pointer on to the
; high byte of the roller ram.
INC IX ; Move the pointer on to the
; high byte of the roller ram.
LD A, (DE) ; Get the high byte from the
; second line of roller ram.
LD (IX+0),A ; Put it into the high byte of
; the top lines roller ram.
INC DE ; Move the pointer on to the low
; byte of the next address.
INC IX ; Move the pointer on to the low
; byte of the next address.
DJNZ SCR10 ; Have we done all the lines yet
; If not then Jjump back
LD (LXHQY 5 L ; Put the low byte of the
; original top line address back.
LD (IX+1) ;H ; Put the high byte of the
; original top line address back.
RET ; And that finishes it.

There is though another method of scrolling the whole screen that does not use
roller ram and is virtually instant. This involves the use of one of the output ports,
more information on these can be found elsewhere. Port #F6 holds a screen
offset value that when adjusted forces the whole screen to move up or down
depending on whether the value was incremented or decremented. By adding
say 128 to the value of the port it causes the screen to be shifted so that the top
line now appears in the middle. The only draw back with this method though is
that the whole screen is scrolled as opposed to any amount by the roller ram
method.

All you ever wanted to know Page 24 but were afraid to ask

ACCESSING SCREEN RAM

If you wish to access the screen ram, roller ram or character ram directly a
special routine is needed to page in the screen environment. This will jump to
your program, which must be in common ram (#C000-#FFFF), and when it
finishes it will return back to where ever the routine is. The paging routine is

listed below.

LD HL, (1)
LD BC; 87
ADD HL, BC

; Get address of user function
; Get displacement

7 -> HL te the user function

; entry point.

LD (ENTRY+1) ,HL ; Store this address so that

LD BC, PROG
ENTRY CALL 0000

DEFW #00E9

RET

All you ever wanted to know

; it forms a call (HL).

; —-> BC to the start of your
; program in common ram.

; This will now have become

; a CALL (HL) statement.

; This is the value of the

; routine that puts you into
; the screen enviroment.

; Note that it is a 16 bit

; value.

; Once your program has ended
; and RETurned it will end up
; dt this instructien. This

; could be anywhere in memory.

Page 25 but were afraid to ask

Input & Output Ports

The ports on the PCW can be made to perform some powerful tasks from
turning the screen on and off to scrolling the whole screen. Of all that's known,
or not known as the case may be, the ports are probably the most mysterious.
The information printed here has taken a lot of people a long time to accumulate
and still leaves plenty of room for more exploration.

PORT FUNCTION/S

#F0 This port is used to read the Cascade joystick if it is attached.

#F5 This port holds the screenbase of the roller ram divided by 2.
Useful for creating alternate video RAM pages.

#F6 This port holds the horizontal screen offset and altering it will
cause the whole screen to scroll up or down.

#F8 This would appear to be a general purpose port as it has many
uses both for input and output. It's input function is the detection of
line or frame flybacks. It is useful to wait for a frame flyback
before scrolling or moving sprites as it will make the action appear
smooth. I can't really think of a use for the line flyback detection as
its happening so fast but its there anyway. To detect these events
read bit 6 and if a 1 is found a line flyback has occured. If
you then read the port straight after detecting the line flyback and
find bit 6 still containing 1 then a frame flyback has occured.

The output side of this port has many varied uses

VALUE EFFECT

01 Cold Boot (be careful !).
07 Turn the screen on.

08 Turn the screen off.

09 Turn the disc motor on.

10 Turn the disc motor off.
11 Turn the bleeper on.

12 Turn the bleeper off.

All you ever wanted to know Page 26 but were afraid to ask

EDGE CONNECTOR

These are the pin-outs for the edge connector. All will be recognised by those
with Z80 hardware knowledge except perhaps MDIS, which disables all internal
devices attached to the Z80.

TOP

No connection a (1@ No connection
ov 3 [1& ov
+5V S) []1®) +5V
No connection @ [1@®) +12V
Al4 @ [1 10 AlS
Al12 anf[] a2 Al13
A10 13)[] (14) All
A8 15)[] (16) A9
A6 a7 []1 (18) A7
A4 19)[] (20) A5
A2 Q21 [] (22) A3
A0 23)[] (24) Al
D6 25)[] (26) D7
D4 Q7)[] (28) D5
D2 29 [1 (30) D3
DO B[] (32) D1
RESET 33)[] 34) MI
BUSRQ 35)[] (36) INT
BUSAK GB7[] 38) WAIT
WR GBI [] 40) MREQ
RD 4[] 42) IORQ
No connection 43)[]1 (44) NSYNC
MDIS (45)[] (46) VIDEO
3.2 MHZ 47) [(48) Z30CLK (4MHZ)
ov 49)[] (50) ov

Further Reading

For information on the CP/M operating system we recommend the book:
OSBORNE CP/M USER GUIDE by Thom Hogan published by Osborne/McGraw Hill.

A book we recommend for beginners in Z80 assembly language is:
PROGRAMMING THE Z80 by Rodnay Zaks published by Sybex.

All you ever wanted to know Page 27 but were afraid to ask

We hope that you will find this package useful and in order to encourage
software development on the PCW, we offer to evaluate and consider
publication of high quality software containing routines from this package.

Technical support

If you have a problem, or think you may have found a bug, then it is always
easier for us to deal with your query if you write to us at:

Technical Support
CP Software, Stonefield, The Hill, Burford
Oxfordshire OX8 4HX

Conventions Used

The source code was prepared using HiSoft's Devpac80. The normal
modifications will probably have to be done to the source to make it compatable
with any other assemblers. In general the symbol # (hash) before a number
implies a hexadecimal base.

Some of the data required by the routines is in the form of a 16 bit value. You
will need to know how to convert a 16 bit number into two 8 bit numbers, here is
one method. This will take a 16 bit number ¥ and produce the value L (low byte)
and H (high byte). Lets assume that X is 54321, first divide X by 256. This gives
the answer 212.1914062, which should be rounded down to 212, which is the
value H. Now times 212 by 256 and take the answer from 54321. This gives the
answer 49, which is the value for L. So 212%¥256+49 = 54321

Examples. 400 = 1 (high byte) , 144 (low byte) = 1¥256+144=400

49152 = 192 (high byte) , 0 (low byte) = 192%256+0=49152
(Please note that all 16 bit values being passed into the routines should be stored
with the low byte first followed by the high byte, this being the normal Z80
convention, and contrary to common sense!)

All you ever wanted to know Page 28 but were afraid to ask

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032

